Physics 151 Class Exercise: Calorimetry II

- 1. A kilogram of a substance gives a T-versus-Q Graph as shown below.
- (a) What are the melting and boiling points?
- (b) What are the specific heats of the substance during its various phases ?
- (c) What are the latent heats of the substance at the various phase changes?

Melting Point $= 110^{\circ}C$

Boiling Point $= 140^{\circ}$ C

Specific Heat as Solid =
$$
c = \frac{Q}{m\Delta T} = \frac{(0.1 \times 10^4 \text{ J})}{(1 \text{kg})(10^{\circ}\text{C})} = 100 \frac{\text{J}}{\text{kg} - {}^{\circ}\text{C}}
$$

Specific Heat as Liquid =
$$
c = \frac{Q}{m\Delta T} = \frac{(0.6 \times 10^4 J)}{(1 \text{kg})(30^{\circ}C)} = 200 \frac{J}{kg - {}^{\circ}C}
$$

Specific Heat as Gas =
$$
c = \frac{Q}{m\Delta T} = \frac{(0.2 \times 10^4 \text{ J})}{(1 \text{kg})(20^{\circ}\text{C})} = 100 \frac{\text{J}}{\text{kg} - \text{°C}}
$$

Latent Heat of Fusion = $L_f = \frac{Q}{Q} = \frac{(0.4 \times 10^4 J)}{(1.4 \times 10^{14} J)}$ $(1 kg)$ 0.4×10^4 $\frac{1}{f} = \frac{Q}{m} = \frac{(1 \text{ kg})^2}{(1 \text{ kg})^2} = 4000$ $L_{\rm f} = \frac{Q}{\rm g} = \frac{(0.4 \times 10^4 \,\rm J)}{(1.4 \times 10^4 \,\rm J)} = 4000 \frac{\rm J}{\rm g}$ *m kg kg* $=\frac{Q}{q}=\frac{(0.4\times10^4 J)}{(1.4\times10^4 J)^2}=$

Latent Heat of Vaporization = $L_v = \frac{Q}{L_v} = \frac{(0.6 \times 10^4 J)}{(1.1 \times 10^{14} J)^2}$ $(1 kg)$ 0.6×10^4 $v_v = \frac{Q}{m} = \frac{(1 \text{ kg})^2}{(1 \text{ kg})^2} = 6000$ $L_v = \frac{Q}{v} = \frac{(0.6 \times 10^4 \text{ J})}{(4.1 \text{ J})} = 6000 \frac{\text{ J}}{v}$ *m* $(1kg)$ kg $=\frac{Q}{\frac{(0.6\times10^4 \text{ J})}{(1.4\times10^4 \text{ J})}}$

2. A 155-g aluminum cylinder is removed from a liquid nitrogen bath, where it has been cooled to −196 °C. The cylinder is immediately placed in an insulated cup containing 80.0 g of water at 15.0 $^{\circ}$ C. What is the equilibrium temperature of this system? If your answer is 0 $^{\circ}$ C, determine the amount of water that has frozen. The average specific heat of aluminum over this temperature range is 653 J/(kg \cdot K).

Assume that $T_f = 0$.

 Q_{A1} = heat gained by aluminum

$$
= m_{\text{Al}} c_{\text{Al}} \left(T_{\text{f}} - T_{\text{Al,i}} \right)
$$

= (0.155 kg) \left(653 \frac{J}{\text{kg} \cdot \text{C}^{\circ}} \right) [0^{\circ}\text{C} - (-196^{\circ}\text{C})]
= 19,838 J
 Q_{wb} = heat lost by water before it freezes
= $m_{\text{w}} c_{\text{w}} \Delta T$

=
$$
(0.0800 \text{ kg})\left(4186 \frac{\text{J}}{\text{kg} \cdot \text{C}^{\circ}}\right) (15.0^{\circ}\text{C})
$$

= 5023 J

Since $Q_{\text{Al}} > Q_{\text{wb}}$, we know that $T_{\text{f}} \leq 0$ °C.

 Q_F = heat lost by 0 °C water during freezing = $m_w L_f = (0.0800 \text{ kg})(33.5 \times 10^4 \text{ J}) = 26,800 \text{ J}$ Since $Q_{\text{Al}} < Q_{\text{wb}} + Q_{\text{wf}}$, not all of the water freezes, so $T_{\text{f}} = \sqrt{0^{\circ}C}$.

Let m_f = the mass of water that freezes.

$$
Q_{\text{Al}} = Q_{\text{wb}} + m_{\text{f}} L_{\text{f}}
$$

\n
$$
m_{\text{f}} = \frac{Q_{\text{Al}} - Q_{\text{wb}}}{L_{\text{f}}}
$$

\n
$$
= \frac{19,838 \text{ J} - 5023 \text{ J}}{33.5 \times 10^4 \text{ J}\text{kg}}
$$

\n
$$
= 44.2 \text{ g}
$$